- 65 SIMAR 89/7

SINGLE PARAMETER TESTING

FINAL REPORT

NAS 8-11715, Part III

Prepared by

E.L. Berger
J.C, Jackson
J.T. Sterling

Electronic Simulation Unit
GENERAL ELECTRIC COMPANY
APOLLO SUPPORT DEPARTMENT

DAYTONA BEACH, FLORIDA



TABLE OF CONTENTS

SUMMARY

INTRODUCTION

THE THEORY OF SINGLE PARAMETER TESTING WITH
GROWING EXPONENTIALS

Introduction

Orthogonalized Signals

Orthogonal Separation of the Signals
Orthogonalized Transfer Function

Parameter Effects Upon the Measured Signals

Single Parameter Testing Theory Applied to a
First Order Transfer Function

Single Parameter Testing Theory Applied to a
Second Order Transfer Function

Active Networks
RESULTS OF SINGLE PARAMETER TESTING
First Order Transfer Function
Second Order System
Second Order System with a Nonlinearity
Testing on X-Y Plotter Servo System
Sixth Order System
3.5.1 Introduction
3.5.2 Partial systems
3.5.3 The Orthogonalized Signals
3.5.4 Determination of the H Matrices

3.5.5 The Results Using Modulation Matrix One




3.5.9

TABLE OF CONTENTS

(Continued)

The Results Using Modulation Matrix Two
The Results Using Modulation Matrix Three

Single Parameter Testing with Gaussian
White Noise

Single Parameter Testing Using Time
Sampling

4.0 SUMMARY OF RESULTS

5.0 CONCLUSIONS AND RECOMMENDATIONS

BIBLIOGRAPHY

ii



FIGURE

LIST OF

FIGURES

Instrumentation Scheme

Orthogonalized Portions of a Transfer Function

Testing Signal Being
Triode Amplifier and

Pentode Amplifier an

Transistor Audio Amplifier and Equivalent Circuit

Parameter Variation
Order System

Parameter Variation
Order System

Parameter Variation
Order System

Parameter Variation
Order System

Parameter Variation
Order System

Processed

Equivalent Circuit

d Equivalent Circuit

and Predictions for First

and Prediction for Second

and Prediction for Second

and Prediction for Second

and Prediction for Second

Contours Relating Limits of Parameters to

GO-NO-GO Testing
Non-Linear Deadband

Linearity Comparison
Variations

Results from the X-Y
Results from the X-Y
Results from the X-Y

Results from the X-Y

on Damping Coefficient

of Estimated Parameter

Plotter Testing
Plotter Testing
Plotter Testing

Plotter Testing

Results from the X-Y Plotter Testing

Results from the X-Y Plotter Testing

PAGE

iii



. FIGURE

3-15

LIST OF FIGURES

(Continued)

Sixth Order System Partial System Impulse

Responses

Filter Bank Block Diagram

Filter Bank Impulse Responses

Filter Bank Impulse Responses

Results of Testing the
Characteristics of the

Results of Testing the
Characteristics of the

Determination of the H
Noise Source Testing

The Time Sampling Test

Cross-Correlation
Responses

Cross—-Correlation
Responses

Matrices Test Setup

Setup

Results from the Time Sampling Test Setup

Results from the Time Sampling Test Setup

PAGE

3-21a

3-21b
3-21c

3-21d

iv



LIST OF TABLES

Experimental Design Plan

Experimental Desigh Equations

Modulation Matrix Three

Actual Versus Predicted Parameter Changes

Modulation Matrix for Time Sampling

Actual Versus Predicted Parameter Changes




SINGLE PARAMETER TESTING

N\ l/"\\ "There is a better way to conduct testing"

~ U

SUMMARY

This report gives the final results obtained on the NAS 8-11715
contract, in the area of single parameter testing., The main ob-
jective of the study is to put into operation better ways of testing
transfer functions. The expected savings are faster checkout time,
better accuracy and less degradation of performance due to the

testing.

The results of this study are positive., We can test linear passive
and active transfer functions. The savings are faster checkout
time, faster isolation of parameters out of tolerance, and less

degradation of performance due to testing.

The technical areas investigated have confirmed two techniques
which are directly applicable to the measurement of the parameters

of a transfer function., These techniques are:

1. Growing exponential probing signals matched to the

partial system responses and filtering.
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2. Growing impulse probing signals and time sampling.

The second method is directly applicable to confidence sampling
for GO-NO-GO testing of transfer functions. Each of these tech-
niques have their advantages. Growing exponentials have the ad-
vantage of accuracy, while the second method is simple and requires

less equipment for implementation,

This report presents the theory of growing exponentials and the
results obtained in measuring first, second and sixth order trans-
fer functions and also the pen position control system of an X-Y
plotter. Practical problems in implementation were encountered with
the X-Y plotter but with proper design of the test equipment these

problems can be eliminated.

The techniques developed in this program will be applied to a
non-linear system model (the Saturn IB thrust vector control
system) and the results will be published in a supplement to this

report which will be issued October 1, 1965.

CONCLUS ION

The main ob jective of the study has been met. We have established

a method for the testing of active and passive transfer functions.
This method was used on several transfer functions and accuracy

and measurement time proved to be as good or better than present me-
thods of checkout. Faster checkout time is a direct result of the
methods studied. Less degradation due to performance is a direct
result of using smooth probing signals. Accuracy is acceptabl=

over a parameter range of + 10% or more.
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1.0 INTRODUCT ION

The ob jective of single parameter testing is to test several
individual parameters of a system with one testing signal,
thereby obtaining faster checkout time, better accuracy, and

less degradation of performance due to testing.

The study program to achieve this objective was divided into

three specific tasks:

Phase A: The development of methods to test simple first and
second order linear passive networks whose transfer functions

resemble those of actual systems.

Phase B: The investigation and selection of criteria developed
in Phase A, Extend the application of the method to include

linear active networks.

Phase C:; Investigate testing implementation problems, by
studying the pen position control system of an X-Y plotter
with the techniques developed in Phases A and B. Extend the

testing technique to higher order systems.

To briefly outline the steps necessary to implement the single

parameter testing technique which was developed:

1. Develop a nominal system response. This response can be
determined by the statistical measurement of a number of
good systems. Once the nominal response is determined it

can be stored on tape.



2. Develop a system model which can be used in the deter-
mination of an estimator. Good methods are available

for this system transfer function determination.

3. The estimator is determined by a theoretical method as
described in Section 2 for first and second order trans-
fer functions or by experimental techniques for higher

order systems.

4. The fourth step is the implementation of the technique
with the actual hardware to be tested keeping in mind

impedance and signal level matching considerations.

The general technical approach of the study was limited to
systems for which continuous transfer functions can be written
and restricted to their linear regions. The techniques devel-
oped in this program will be applied to a nonlinear system

model (the Saturn IB thrust vector control system described in
Section 3.5) and these results will be published October 1, 1965,

as a supplement to this report.



SECTION 2
THE THEORY OF SINGLE PARAMETER TESTING WITH

GROWING EXPONENT IALS

2.1 INTRODUCTION

In this section, the theory will be presented which allows
single parameter testing with growing exponentials, The use
of growing exponentials has been investigated by Huggins, et
al, in such applications as electrocardiography, in ident-
ification of static nonlinear operators, and in system identi-

fication problems.(l_lS)

This method was actively studied in detail with the objective
of applying it to dynamic systems. The general instrumentation

scheme for measurement 1is shown in Figure 2-1.

PROB ING NOMINAL t//\\ FILTER
S IGNAL SYSTEM . BANK
ACTUAL ESTIMATOR
SYSTEM
SAMPLE
AND
HOLD
Parameters
of transfer
function
Figure 2-1

Instrumentation Scheme



In a generalized point of view, the signals are a collection
of vectors in "n" dimensional space. Each of these vectors
is orthogonal over the interval of interest, and each vector

represents an independent coordinate.

If the system transfer function can be expanded in terms of
orthogonal linear stationary operators, then the measurement
of these operators can be accomplished by measuring the pro-

jections of the signal vectors on to the linear operator space.

For example, assume that the operator space is as illustrated

in Figure 2-2,

8
1
\

\ -7 Orthogonalized Portions
\ Pad of a

\ _ - Transfer Function

- O
Figure 2-2

where o and 8 are two orthogonalized portions of some transfer
function. Also assume any pair of signals from any orthogonal
set as illustrated by the dashed lines in Figure 2-2. Then
the projections of o and 8, the signal vectors, on to the op-
erator space will, when multiplied by scale factors, measure
the magnitude of a and 3. For purposes in this report o and

8 would be proportional to a change in some parameter.



To obtain orthogonalized signals, it is sufficient to have the
time average of the innerproduct of the signals zero. Let fi(t)

be the ii—:h signal, then

j_ i fi(t) fj(t) dt = 0 (2-1)

when i # j, otherwise
L4
?

[
)

fi(t) £,(t) at = 1. (2-2)

[ee]

Now in order to obtain orthogonal signals, exponentials may be
considered. Exponentials have several advantages over other sets
of orthogonal functions. These include relatively short time
bases, and capabilities of being matched to the system to be

tested.,

Orthogonalization of the exponentials may be accomplished by the

Kautz method.(lo)

This method allows the approximation of the
impulse response of any network by sums of orthogonalized signals.
These signals, for a transfer function with all real poles and a

higher order demoninator than numerator, become:

(s +8;) """ " (s+5 ;)

2.2 ORTHOGONALIZED SIGNALS
|

& _(s) = J—s -s (2-3)
n : n n e o e o
where Sn = complex frequency with a negative real part

of the nEl:l exponential component

0|
n

con jugate of Sn



_

For example, let the transfer function be

H(S) = oz (2-4)

Then the set of orthogonalized exponentials are:

1

@l(S) = /2K ST R (2-5)
o (s - K)
¢ (s) = /2K
2 (s + K)2
2
25(s) = /2K (s - K)3
. (s + K)

In the time domain the set of signals become:

fl(t) = /2K exp (-K t) (2-6)
£,(t) = /2K (1 + 2 t) exp (-K t)

In the following text we will be concerned with negative time
functions and sampling at time zero., When considering negative

time, the set of orthogonalized components become

/2K

Bils) = —5rw (2-7)

v - /2K (-S -K)
(-s + K)*

HH
—~
n

se a0 e )



And in the time domain

£,(t) = J2K  exp (K t) for t < 0O (2-8)
£,(t) = J2K exp (K t) (1L + 2t) for t < 0O

When the transfer function has complex poles, then the orthog-

onalization takes the form of(lo)

s | 3 2 2] r 3 2 2]
¢2v—l(s) 20Lv L(S al) * Bl J...;(s qv—l) * Bv—l (s + Sy )
2 21 v 2 2 r 2 2
@2V(S) [(S * al) * Bl J...M(S * av—l) + 8 v—l]L(s+'av) * 8v J
(2-9)

where v =1, 2 - - - n/2

and the poles are at

SV = - a, - jBV and Sv = -a, + jBV.

The upper (plus) sign in Eguation 2-9 pertains to

@2v—l and the lower (minus) sign pertains to ézv(s).
Note, two signals are assigned to each second order

pole pair, one for each pole.

2.3 ORTHOGONAL SEPARATION OF THE S IGNALS

To separate these orthogonalized signals, we only need to accomp-

lish the integration
+ © * _ .',izj _
j fi(t) fj(t) at = 5% £ 3 (2-10)

-—



This can be accomplished by performing the contour integration

in the frequency domain, i.e., Parseval's Theorem for aperiodic

functions.(20)

@ das

7 3 (2-11)

£, (t) fj(t) dt = jc 3, (-s) @j(s)

|
'
J —_— O

*
Note that @i(-s) is a real filter which has an impulse response
fi(t) in positive time. The integration in the complex plane

is equivalent to sampling the results at time t = 0.

2.4 ORTHOGONALIZED TRANSFER FUNCTION

Consider a system H(S) as a function of its parameter variations
around some specified nominal design value. Then a Taylor's

series expansion can be written as:

2
- dH(S) AH(S) Ly 0 H 2
H(S) - Ho(s) + AG« l +HC(. Aa2 + ... 2 2 Aql T oeeee
1 2 RNy

_ o . (2-12)
where HO(S) = the specified nominal system and
dH(S) _ e . , _
So. Hi(S) = first partial derivative of the system

i
with respect to the iEh parameter.

Thus, for small deviations in the parameter values, the actual

system can be broken into the sum of the partial systems, Hi(S).

Now, let the transfer function be represented by polynomials as:

N n
\ ¢c_ 8
; n
_N(s) n =0 _
N d. S
; n
n=2~0
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H(s) can be expanded in terms of the Taylcr series expansion

for small variations in cn and dn as

n n

H(S) ~ H (S) + ) QH(S) po 4 oH pa (2-14)

~ Yo L dc n s od n
n n
n=20 n=20

. dH(S) . . . .

Any given 32 is orthogonal to any other partial derivative
i
25(8) . Likewise, any given %%iﬁl is orthogonal to any other
j i
partial derivative gg(s) .
J

This property allows independent measurement of the relative
magnitude of all the ci's or di's when only the ci's or di's
are measured. If the partial systems of the c's and d's are
also independent, then separation between the c's and d's can

be accomplished.

2.5 PARAMETER EFFECTS UPON THE MEASURED SIGNALS

Each of the testing signals when passed through the system will
be filtered by each partial system. The outputs of these par-
tial systems are combined and then passed through the output

filters. The process is illustrated in Figure 2-3.

The mathematical description of passing the inputs through the
particular system, filter and estimator will now be given in
detail. This analysis will be general and apply to nEh order

transfer functions.
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Figure 2-3

. Testing Signal Being Processed

The signals appearing at the output of the Hi(S) component

system are

H,(s) [F] (2-15)

where [ F] is a row matrix of the input probing signals. The
ocoutput at the jEﬂ filter in the filter bank is

éj(—s) Hi(s) Lrl, (2-16)

which is a row matrix denoted Hj'



The collection of these row matrices denotes a modulation matrix,
H . H, describes the effects of Hi(S) on the outputs of the
filters under the influence of the input probing signals. The

ob ject will be to sample outputs of these filters at a particular

time. These samples will represent the variation in the par-

ameters tested,

The output of th filter can be obtained at any particular time

by performing the following integration in the complex plane:

ds

7 3 (2-17)

h(1) = Vc exp (S7) @’J‘.(-s) H,(S) %,(s)

where 7 is a delay variable,

This equation is the transform of the convolution integral, i.e.,

-+ @
hy(r) = I hy(e) £;(1 - €) at (2-18)

o

where hj(t) is the weighting function of the filter Hi(S) @3(-8)

and fi(t) is the iE-}l input signal.

Letting 17 = 0; the eguation gives the value of a sample of the

output signal at 1 = 0. Thus we obtain,

hy = r T oht) £ =0 8" 35
(2-19)

These values of hjk represent the results of the input signal
acting on the transfer function Hi(S) and the measuring

*
filter @j(-s) at the time 7 = 0. Forming the Hd matrix with



these values of hjk as the elements, we have:

- -1
h1q hys - - hip
J
BT hyy hys - - hon (2-20)
ml - - mn

where each row represents the output of a filter and each

column represents an input signal.

Now form a column matrix C
| [
|

(Yesoeooe

n

L
which represents the magnitude of the probing signal components.
An additional requirement from practical considerations is that
energy be constant,
N
N Cn = 1. (2-22)
n =
Multiplying the Hﬁ matrix by this column matrix [c] will give
a column matrix

M = _T_Ha". \:c (2-23)

1
a BIRRA

which is the representative of the signal appearing at the

output of each filter due to the partial system Hi(S).



The collection of these columns may be arranged to form a

matrix, M, called the modulation matrix.

_ T
M = t_MO, M, ...MOL ...Mn_J (2-24)

By arranging the parameter deviations as a column array

.
%

ral =1, (2-25)
1
n

the total system response, G, can be represented as
- . =y VIR
[cl =M « [al ='M o + M o +. ... (2-26)

The values of oq through a, can be determined by solving this

matrix equation, i.e.,

"Mt (el = [a) (2-27)

4
!

Since (M—lj is composed of the input signal magnitude [C], these
magnitudes can be adjusted to maximize the estimate of the par-

ameter where they are sub jected to noise.

The minimization of white noise can be accomplished from least-
square statistical theory. The criterion selected for opti-
mization is the minimization of the covariance of the error in

the parameter estimates, as expressed by the minimum variance

estimator (M M)—l.

This can be minimized by maximizing the determinate

‘M MI = M| 2 (2-28)




2.6 SINGLE PARAMETER TESTING THEORY APPLIED TO A FIRST

ORDER TRANSFER FUNCT ION

The general first order transfer function is

C S+Co
= 3. s+ 4 (2-29)
1 o

By differentation of this function with respect to the co-

efficients, we obtain

do/d

dH(S) _ S 1 1
—2L =H (S8) = =—F—F = % - T (2-30)
acl cq dlS + do dl dlS + do
OH(S) _ _ 1
3¢ = Hg (s) = d.s + a (2-31)
o) o 1 o
-8 (c,8 + c_)
oH
ad(s = Hy (8) = Lo (2-32)
1 1 (dls + do)
AH(S) -y (g) = ©1° T % (2-33)
od - Ma - 2
o o (dls + do)

Two testing exponentials were determined by the Kautz relation.

These are
1l

-8 + d
o/dl

24 (s) J o To/dy (2-34)

2 4d ,. -8 - 4,/4;
J o/d, >
(-s + do/dl)

¢, (s)

where ¢ (S) is the representation of this negative time

function in the freguency domain.



In the time domain

4
esruesre (0]
£ (t) = Jz doyd1  exp (a— t) for t < 0 (2-35)
1 1
— a
fz(t) = JZ do/dl (1 + 2t) exp <39-t) for £t < 0
; 1

The matrix representation of the signals appearing at the filter

outputs of the partial systems are:

B 7

11
H = 2d," 9, (2-36)
C
1
1
O —_ —_——
i 2a; |
11|
H, = 2d, 24, (2-37)
(@]
1
LO + >a
- O-l
cy do + cg dl _ cq
4 d12 a, ‘ 2d12
Hd = - (2-38)
1
0 cl do + cl
3
4a® a
_ do <, + cO dl S
Ha = -~ 2 ’ 2 (2-39)
(o) 4 do dl 2d




Forming the matrix M and maximizing its determinant leads to

the result that only the second signal fz(t) is required,

€1

cos

sin ¥

/2

The estimators for the parameters c

and 4 are
n n

-2 d
e}
2 2
cl d dl
1 2
-
4dl 4dl
6 6
—4do +4dO
3

ACl

Aco

by the parameter which that row estimates,

(2-40)
2
-
co Ad
> 1
d
o
(2-41)
2C11 g
> o
d
1
(2-42)

Normalizing the estimator is accomplished by dividing each row




2 4 2 4 re
3 cy 3 ¢y l/cl
1
MC =
(2-44)
d o}
2 o 4 o Ac
T~ 3 ¢ t3 O/co
o o

Thus, using this result for estimation and f2(t) as a probing

signal, any first order transfer function can be measured to
Adl Ado Acl Aco

obtain , , , with one probing signal.
dl do €1 o

2.7 SINGLE PARAMETER TESTING THEORY APPLIED TO SECOND

ORDER TRANSFER FUNCTIONS

The general second order transfer function is

~ cls + co
H(s) = 5 (2-45)

s® + dls + do

This transfer function can also be written as

ClS + CO
H(s) = > 5 (2~46)
(s +a)° + 8

The partial derivatives of H(S) with respect to the parameters
< and c, are the component partial systems corresponding to

c_ and c

o 1°
S_H_. = S 5 5 = HC (S) (2-47)
1 (s +a)® + 8 1
oOH 1
5= T — = H, (s)
C\’co (s + a)z + 82 )




The partial derivatives of H(S), giving the component partial

systems corresponding to do and dl, are

H -S(cls + co)

Q

(s +a)? + 82 !

- |
3H _ -(clS +cg) " m. (s)
Bdo 27‘2 d2

L(s +0L)2 + 8

The probing signals are then found from the general equation 2-9

—s + Ju? + 82
t,(s) = J2a (2-49)
1 (-5 + OL)2 + B2
s - Ju? + 87
¢_(s) = J2a
2 (-5 + OL)2 2
[-s + la? + 82_] {_('S _a )2 2_;
@3(8) = /2a ; 2j2
[(-s +a )+ 8 ]
( kx + B N L( -S —a) + 8 J
§4(S) = J2u - N 252
L(-s +a)’ + 8
The matrix components for the partial systems are
h, === : & a (2-50
sk =33 e @J.(—s) Hi(S) @k(s) S -50)



The matrix elements for the partial system %%— are found as follows:

1
=1 T NH(S)
(hll)cl T 2mjde 2,(-8) So, ?,(s) ds (2-51)
= 52 | /2 (S+ ng + 82) S fEE(-S-+Ja2 + 82)
2nj J4c 5 > 5 5 . S s
(s +a)” +8 (s+a )" +8 (-5 +a)” + 8

This integral is evaluated by integrating around the left half-
plane, finding the residues at the left half-plane poles. The

residue at the second order pole at (-a - j8) is

Ry = lim a s (82 _ OL2 _ 82) _ 1 (2-52)
. ds o2 | 2 2”7 2
S == (o -jR) (s +a - 3jB) L(S -a)” + 87, léa
The residue R2 at (- a + jg) is the complex conjugate of Rl:
1
R = -
2 l6OL2
The sum of the residues is - —lf , and so
8
1 1
(hy7) = (-2) (- =) =5 .
11 = 8OL2 4o
The matrix elements for %%— are found the same way and the
resulting maxtrixes are
1, _ L OW
40, 40
1 1
0 -— 0 - =
HC = da da (2-53)
1 1
0 0] Y 0
1 2-17
Lo 0 0 &




Of the four probing signals being considered only two of the

/
1 a+ Na© + RZ -1 o - Jaz + R2
4@® +8%) 4 (a? +8%) 4(? +82) 4x(a? + 82)
a—‘é, + 82 1 a+-Ja2 + 82 _ 1
4a(a2 + Rz) 4(0L2 + 82) 4a(a2 82) 4((12 + 82)
[ 5 N
0 0 1 n+t 'ne + 8
4((12 82) 4a(a2 + 82)
0 0 o Jaz + Rz 1
40 (@? +8%)  4(a? +8%)
-
(2—54)

four signals need be used.

expressed as a linear combination of two parts

8, (s)

5, (s)
where

8, (8)

@y(S)

~

It

7% (8, (s) +

oyl
/20 L@x(s)

@y(s)j

@y(S)J'

For example @l(s) and ®2(S) can be

(2-55)

(2-56)



Testing with either @1(8) or @2(8) will have the same infor-
mation since the results will be linear combinations of the
parts. This effect can be seen in the matrix elements for

dH OH . L

—— and S notice the hij elements for i = j are all equal.

acl

This is the result of the @X(S) component. The elements hij
for i = j + 1 have terms which alternate in sign. This is

the result of the alternating sign of @y(s) in @l(s) and @2(8).

We therefore can reduce the consideration of signals to @l(s)
and ®4(S) and be confident that all of the resulting informa-

tion concerning the two parameters ¢y and €_ can be extracted,

)

Since there are now only two probing signals, the coefficients
of @l(s) and §4(S) are chosen to be cos § and sin | as in the
first order example. The calculation of the parameter modu-

lation matrix M is as follows:

MC = LMC MC ; (2-57)
1l o}
T T n r
L cos_y
" _ Y 0 cos oo
<, ; = (2-58)
_l_ { . sin \b
0 i ; sin mJ | ™
— - =3 -
_ , T .
{
1 N - Vaz + 82
2 2 2 2 cos
4(a“ + 8°) do (0 + 87)
MC = (2—598)
o
0 21 5 sin
4(a® + 87%) L t




B - n
acos § + sin § .a- sz + sz
4a(a2 + 82)
M, = (2-59Db)
c
o)
sin
4(a2 + 82)
L .
Then
N A R
cos | acos § + sin § La-NaT + BT
o 4a(a2 + 82)
Mc = (2-60)
sin sin
40, 4(&2 + 82)
L .
The maximum value of the determinant ‘ﬁcMcl occurs when | = 900.
Substitution of { = 90° in the expression for M, then yields
i T
0 o= Jaz + 82
4o (a? +8%)
M = (2-61
c
1l 1
4o 4((12 + 82)
L _




The matrix components for the denominator partial systems are
found in the same way, but the work involved is much greater
because of the complexity of the integrands. As an example,

the matrix component (hll)d is found from

1
(hy)g . L T \/'2a(s,+«/a2+s2) (2-62)
- | -
1 2nj Jc¢ r(s + OL)2 + sz
/
-S(clS + Co) ] J2a (-8 + an +_B2 s
r(s +0L)2+82J32 '-r(—s +c1)2+82_'1

Evaluation of these types of integrals is extremely tedious and

necessitates a long procedure of solution and recheck cycles.

The final matrix result is

/ 2 2 o) 82 -
H = 2 2a No© + 8 2 O (2-63)
\ |




and

- ]
-1 Mo + o 0’ - 827 !
! S _
w22 32y 1 o 2, 42 (g 64)
1
2
2 cqo
H, = -1 (c J 2 2 - o
do 2, 2 2 Llrat 4+ 8 2 2 -
8 (0 + B87) a® + B
2 2
- r —
) 3 % 5 L G0+ ¢© % B2 |
4 +8%) *~ a + B -
e -

The coefficients of @l(s) and §4(S) are chosen to be cos § and

sin § from constant energy considerations and the parameter

modulation matrix is formed as Md = LMdl Mdoj
where
_ R [cos b
Ma1 = "Hai, Ulsin vg
and
-y + lcos T
Mso = " Hao, Lsin v

90~.

The maximum value of IﬁdM ‘ occurs when |



2,8 ACTIVE NETWORKS

The technique normally applied to analyzing an active network
consists of picking a region of operation and an appropriate
mcdel that describes the operation over a specific dynamic
range. The model then depends on the physical processes and

the ultimate answers that are desired from the model. Since

an accurate functional model can abstract the internal operation
of the physical process only over a dynamic range, limits must
e specified for the validity of the parameters in the function-

al model,

Now the concept of a small signal model can be clearly stated.
The dynamic range is a small signal specified in terms of in-
put-terminal signal condition, and the model parameters are
the network parameters. This in turn allows the discussion of
a linear active network model without describing the complex
physical process, Thus, it allows the non-linearities in the
physical process to be considered outside of the dynamic range
and detailed questions regarding these non-linearities must be

referred to another model,

Within this framework of a limited dynamic range for a partic-
ular model, all of the concepts ©f linear system analysis can
be applied. That is, linear differential equations and corre-

sponding Laplace and Fourier transforms can be used to evaluate

the state of the model. At this point, questions regarding the

existence of a transform, stability properties, system bandwidth,




"availeble output nower and mezasurearilityv cain ho considerad,

[

a

In order to limit the scope of the general system problem

a specific interpretation must be considered.

The interpretation of an Active System used in this study is
in reference to a device that exhibits a unilateral transfer
characteristic., A simple amplifier is the most common example
exhibiting this unilateral characteristic. Consequently, an
amplifier circuit will be evaluated in terms of the proposed

method of single parameter testing.

A number of amplifier circuits were considered.(zz) One ampli-
fier circuit to be investigated is shown schematically in Fig-
ure 2-4 along with the appropriate equivalent circuit or small

signal model.

The transfer function relating input to output is derived in

Reference 22.

a S R. U
o = - (2-65)
e.
in (Rg + Ri) [(1 + rp/RL + rp/RO) S + RL ry
C RORL

or in standard form

©° - Ks

€in dls + do

rp = Tube dynamic plate resistance
M = Tube amplification ratio
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TRIODE AMPLIFIER AND EQUIVALENT CIRCUIT
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K = i
R + R
( g *)
= a -
dl 1 + rp/RL T :\O
dO = (RL + r_)/C RoRy,

Clearly this amplifier falls into the general category investi-
gated under the definition of first order transfer functions.
The fact that "rp” is included in both “dl" and ”do“ complicates
the testing required to interrcgate the plate resistance. How-~-
ever, "J" the tube amplification ratio is & linear function in
the gain and clearly fits into the parameters already measured.
Another note worthy fact in this transfer function is equal

order of "s" in both numerator and denominator.

A ma jor assumption in the ampiifier transfer function concerns
the validity of the model for the tube operation, Consequently,
testing signals must be used that satisfy the dynamic range of
the model in order to legitimately test the particular transfer
function. Let's proceed by obtaining a transfer characteristic
for a pentode amplifier as shown in Figure 2.5. The appropriate
small signal equivalent circuit in Figure 2-5 is somewhat non-
conventional, but for ccomparison it is desirable to obtain a
relation similar to a triode with tube amplification and plate

resistance as parameters.
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Tne transfer IZunction for the pentcde amplifier is derived in

Reference 22,

, 2
e ) “Ricl (lTchks)s
e.
in 2 3 - 2 .
(d5 s¥ +d, s+ 1) (d3 s¥ +4, 87 +4d; 5 +4d,)
where (2-66)
R, + r
do - 1 (1 + xR D>
CORO L
r + R r + R R, C, r
RO RL 070
C r r
= 3 _P el
d2 rp C3 + R Cp (Ck + 1 + R + RL)

3 k "k 3
d4 = R Cl + Ri Cl + R C2
dS = Rl Rg Cl C2

It is interesting to see that plate resistance is contained in
every coefficient of the cubic. However, tube transconductance
(G_ = u/rp) is normally given for a pentode and the possibility
exists of examining the active tube parameter as a gain co-
efficient in this transfer function. Also note that the order
of the denominator is high, and it might be difficult to measur
each of the circuit parameters because of the laborious calcu-
lating required. One other factor involved in this model is
signal dynamics, which again just remain within the bounds of

the model.




Next, let's examine a transistor amplifier in a similar fashion
to the tube circuits in order to allow some comparison of active
parameter measurement requirements for transistors. A simple
audio amplifier circuit with the eguivalent circuit is shown
in Figure 2-6. The by-pass around the emitter bias resistor

is assumed perfect in order to simplify that algebra.

The transfer function for this transistor amplifier is derived

in Reference 22,

e 2

= = K S — (2-67)
in (d3 S + 1) (02 s° + d, S + do)
where
R. R. C.a
k = L0 0%
rf\
o
_ Rgg TRy 1-a5
4 = F—x ) & *+ =) =5
BB i 1 e 1
C R + R, l -a
a, = 69 + (RBB l) R+ ( - O) R +1
+ 1 BB i d e El
02 = Ce Rg
d3 = (RL + RO) Co

The active device parameters appear in the gain and two co-

efficients of the gquadratic denominator term. Consequently,
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TRANSISTOR AUDIO AMPLIFIER AND EQUIVALENT CIRCUIT



_ similar measurements to those required for the pentode amplifier
can be applied to this transistor amplifier. In spite of the
circuit loading due to the transistor, the transfer character-

istic comes out rather simple in terms of the active parameters,

The governing assumption for the development of all three trans-
fer functions is certainly the model validity and the ability

to keep signals within model restrictions. A common property
clearly contained in all three characteristics is the active
parameter in the gain coefficieﬁt. In the pentode amplifier

and the transistor audio amplifier the third order denominator
term and the second order term can be compared if the cubic was
factored into a qguadratic and first order term. Then both would
exhibit second order denominator terms with the active element

clearly contained in coefficients,

The relative importance of coefficients in the denominator of

a second order transfer function are equivalent to the importance
of parameters in an active device. Consequently, a thorough
evaluation in any experimental sense of variations in denomi-

nator coefficients of a second order system, is required.

Normally, the transistion from cne model of an active network

to another model is based on properties of the active parameters.
For example, a tube equivalent circuit is modified when either
dynamic plate resistance or tube gain vary appreciably over the
dynamic range of interest. In the mathematical model some of

the parameter variations can be included with a non-linear or




non-constant function representing the parameter. 1In a strict
mathematical sense, this non—lineaf effect is difficult is in-
clude but experimental observations can be made on the analog
computer simulation. If the basic relations obtained for a con-
stant parameter second order system are used in con junction with
a saturation effect type non-linearity, some small range for the

model can be established.

2.8,1 Initial Conditjion in a System

Initial conditions and constant source values, such as a D-C
bias, both enter a transfer function in a very similar way as
many text books prove. The question here is one of measure-
ability of this source value and where it appears in the transfer
characteristic, To observe these properties, consider the defi-

nition of a Laplace transform.

H(s) = f f(t) exp (-st) dt (2-67)
o
o
where S . = Laplace transform operator
f(t) = Time function of the source

Normally an initial value theorem is stated so that the initial
value depends upon a limiting process where "S'" approaches in-
finity. Then this transfer function can only take on non-van-
ishing values if the exponential term does not wvanish. This can
occur only for very small values of it, and the result in the

l1imit is the initial condition.



Consider a tvmical source in the general form

£(t) = Mt"
where
n = 0,1, 2, ... &
M = Scale factor
clearly
H(s) = M n!
Sn+l

If £(t) is merely a bias contained in a voltage equation,
n = 0 and

Lim H(S) = Lim
S —p = S —> o

Since S contains a real and imaginary part (S =a + j w)
this clearly shows that the real part of S is required
to go to infinity as well as the imaginary part. This is
required because the integral of an exponential along
only a vertical line would become an undefined quantity

(except in a special impulse sense).

This would not be clear if the theorem is written as follows:

n+l
Lim S F(S) = [i%ﬁl] = £(™) o)
at
S —— ®

From this discussion it is apparent that initial condi-

" tions appear normally as poles at the origin.



“he next concern is the measureability of these poles.
gsaince the growing exponential technique is based on a
transient responce. The non-transient, D-C or steady
values can not be measured by applying this technique.
However, the opposite question concerning the use of
growing exponentials in testing a system with a pole

at zero does arise. The normal approach in testing a
system with a D-C value is too block the D-C out of the
measuring circuit. This can be accomplished in an elec-
trical network with a capacitor in series with the out-
put to the measuring equipment. A typical transfer
characteristic for this blocking action is

cC RO S S

Hp(s) = TR, S+l - §% 1

Obviously the pole at the origin is removed and replaced

with a pole at

P = ==

This complicates the mathematics in obtaining an esti-
mator for the growing exponential technique in that it
adds a pole to be considered in evaluation of residues,
However, the basic mathematics is in no way limited
since the presence of additional poles is not presently

considered a limiting factor.

One requirement inferred in a system in this discussion

is stability. In order to test with growing exponential



signals, a basic regquirement is that bounded or controlled
input signals produce controlled or bounded output signals.
With this in mind, problems associated with stability and

initial conditions must be assumed answered by another means.

N
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3.0 THE RESULTS OF SINGLE PARAMETER TEST ING

The results presented in Section 3.1 through 3.4 are in summary
form. More complete details can be found in the previous phase
reports (References 21, 22, and 23). The results of testing the
sixth order transfer function are being reported for the first

time and are therefore given in more detail (Section 3.5).

3.1 THE FIRST ORDER TRANSFER FUNCTION

The first transfer function tested with the Single Parameter

Testing setup as shown in Figure 2-1 was

H(S) = g—=573 .
1l e}

Results of the parameter estimator outputs as a function of time
are given in Figure 3-1 for incremental parameter changes of 3%,
i.e., 3%, 6%, 9%, 12%, 15%, 18%, etc. Measurements of the par-
meter errors were taken when the probing signal stopped. Notice
that when only one parameter is varied, the estimate of the other
parameter is approximately zero. Notice also that an incremental
change in a parameter results in a similar incremental change in
the estimate. The estimates were accurate up to approximately a
+ 40% change in the parameter. After 40%, there was an interaction
between the estimators for dl and do. This is not surprising be-
cause the approximation of the transfer function is based on a
Taylor series expansion, which is only accurate within a limited

region, when higher order terms are neglected.
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If both parameters are varied at the same time, the range of
parameter variation over which an accurate estimate can be ob-

tained, 1is decreased.

3.1.1 Noise Experiment

A noise experiment was conducted to determine the sensitivity of
the parameter measurement accuracy to noise. The experiment was
conducted by inserting independent band limited noise along with
the probing signal into both the nominal and actual system under
test. The signal to noise ratio was measured by the ratio

peak voltage of signal
rms noise voltage

By observing the results of measuring a parameter variation of 10%
in dl' it was concluded that the testing signal should be greater
than 26 db above the rms noise level, With a 26 db voltage ratio

the range of indication of d, was 10% + 1.5%.

1

3.1.2 Time Varying Parameters

To study the effects of time varying parameters upon the measure-
ment accuracy, dl was allowed to vary sinusoidally, as

dl + Adl sin wot.

The radian frequency w, was varied and the dl estimator cutput
observed, The results show that in tests of time varying par-
ameters, good measurement accuracy can be obtained at radian

freguencies below one half of the value of the transfer function

pole.




3.1.3 A Second Example of a First Order Transfer Function

Another first order transfer function of the form

clS + co

dls + do
was tested using the theory developed in Section 2.6. The ex-
periment was conducted on this transfer function to establish
the measurability of coefficients in the numerator and denom-

inator. The previous example (Section 3.1) only measured the

effect of coefficients in the denominator.

The results showed that the numerator estimator outputs were
orthogonal to each other for about a + 20% change in either
numerator parameter. The denominator estimator outputs also
were orthogonal to each other. However, there was an inter-
action between numerator term changes and the denominator term
output estimates, and vice-versa. That is, for a 10% change in
cl, the four estimator outputs would be: cl—lO%, cO-O% and dl
and do would read a value other than the desired 0%. This inter-
action problem between the numerator and denominator terms could
have been solved by adding a third signal to the two signals
which make up the probing signal (see Section 2.6). This third
signal is an impulse at time t = 0. The output of the subtraction
circuit is then used as another filter bank output. This impulse
is required since the order of the numerator is the same as the

order of the denominator. This interaction between the numerator



and denominator terms would also not be a problem if the time

sampling technique to be described in Section 3.5.9 were used.

3.2 SECOND ORDER SYSTEM

A second order transfer function of the form

s +4d s +4d
1 o

was tested using the theory which was developed in Section 2.7.
The results of the experimentation showed that parameter varia-
tions in o and cq could be measured independently. The following
two figures 3-2 and 3-3 illustrate the data obtained. The par-
ameter variations are for + 10%, + 20%, + 30%. In Figure 3-2,

Cc_ was varied, while ¢

o was held at its nominal value. In Figure

1l
3-3, cO was held constant while cl was varied, The trace in the

middle of each figure is the optimum probing signal.

The system was also tested with variations of dl and do up to 30%
under otherwise nominal conditions (See Figures 3-4 and 3-5).
Variations in do were readily measured over a + 10% range. The
measurement of the parameter dl, however, was influenced by var-
iation in the parameter do as well as the parameter dl' However,
by plotting dl versus do on a set of contours of constant dl and
do’ variations of both parameters can be measured. Alternatively,
when limits have been set on do and dl, contours such as those in
Figure 3-6 can be used to decide whether or not the system is

acceptable,
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As was the case of the first order system described in Section
3.1.3 there was an interaction betﬁeen numerator term changes
and the denominator term output estimates, and vice versa. This
interaction problem could have been solved by using a probing
signal consisting of four signals instead of the two signals
which were used. These four signals are given in Equation 2-49,.
The filter bank would also be expanded to four filters. This
interaction between the numerator and denominator terms would
also not be a problem if the time sampling technigue to be de-

scribed in Section 3.5.9 were used.

3.3 SECOND ORDER SYSTEM WITH A NONL INEARITY

The gain of the coefficient dl of the second order system was
varied nonlinearly as in Figure 3-7. Plots comparing the mea-
surements of parameter variation are shown in Figure 3-8. The
effect of the damping nonlinearity was to offset the measurements
by an approximate value without appreciably affecting the slopes
of the plots of estimated versus actual variations of the par-

ameters.

The isolation of the measurement of do variations from dl var-

iations was somewhat deteriorated by inclusion of the nonline

ey
4Ly

Q

where there is some wvariation of the dO measurement from an initial

offset value. As mentioned in Section 3.2, the measurement of 4,

could not be isolated from do variations, even with a linear system,
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I
Figure 3-7

Non-Linear Deadband On Damping Coefficient

3.4 TESTING AN X-Y PLOTTER SERVO SYSTEM

The technical approach of single parameter testing with growing
exponentials signals was applied to the servo-loop controlling
pen position on an X-Y plotter. The primary purpose of the test
was to establish the test procedure for a physical system and
gain insight into practical problems. The testing was necessary
for a theoretical examination of more complex systems because
evaluation of various poles ignored in the model development

could show their practical effect.

In general the results of the tests on the X-Y plotter are weaker
than initially expected since no specific guantitative results
can be stated. However, qualitative results pertinent to the
general testing philosophy and the observations made during the
tests showed an improved testing procedure for more complex

systems.
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The main conclusions obtained from the experimental work on the

X-Y plotter arm position control loop are:

d.

The practical sensitivity of the gréwing exponential
technique to variations in parameter values depends
strongly on how close the input probing signal is
matched to the partial derivative of the system
function. This signal match requires accurate co-
efficient values in the transfer function of the
nominal system. Some systems may require an ex-
tensive evaluation of the system operation to obtain

these transfer function coefficients.

The instrumentation for implementing the method must
be compatible with input/output impedance relations
of the system under evaluation. The use of isolation
devices between the testing equipment and the system
to be tested would alleviate the impedance matching

problem.

Signal levels between the testing equipment and the
transfer function under evaluation must be compatible.
This was a problem with the X-Y plotter which operates
with millivolt signals and the analog computer which
operates from 10 millivolts to 100 volts. It would
have been desirable to test the X-Y plotter with a
transistorized testing system designed to operate in

the low millivolt region.



The data shown in Figure 3-9 includes the input probing signal
matched to H(S) and the difference in the response of each of
the two X-Y plotter servo loops. (For a nominal system, a

second X-Y plotter servo loop was used.)

Figure 3-10 illustrates the response from each of the servo

loops separately. Figure 3-11 shows a gain change in each servo
loop observed at the estimator output terminal. Figures 3-12 and
3-13 indicate the respective changes in each recorder (+ 100 per-
cent, 0O, -50 percent). Finally, Figure 3-14 shows two separate

levels of limiting the servo travel.

The second order transfer function for the servo loop investigated
is:

H(s) =

K
82 + 15.08s5 + 184.4
The total transfer function obtained by a detailed analysis and

measured data is:

K(S + 275)
+ 15.08S + 184.4) (s + 81.,5) (s + 279)

Hp(s) = (52
In review, it can be stated that the following reasons accounted
for the difficulties in obtaining quantitative results:
a. The approximation of the transfer function in forming
the matching input signal.
b. Nonlinear effects introduced by the chopper and motor
modulation demodulation characteristic.
c. Signal levels from the servo loop required large gains

to be compatible with the computer signal levels.
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Figure 3-9. Input Probing Signal
System A Minus
System B Response

Figure 3-10. Servo-Loop Response
a. System A Response
b. System B Response

Figure 3-11. Gain Change at Estimator
Output
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3.5 SIXTH ORDER SYSTEM

3.5.1 Introduction

The transfer function of an actual Saturn-IB system was selected
for testing using the growing exponential technique. The thrust
vector control system uses a Moog's Model 16-120A dynamic pressure
feedback servovalue and a Moog's Model 17-150 actuator. The lin-
earized closed loop transfer function of the system derived from
empirical data is

- L-1
_ 2 2
G7 = L‘(1 + S/wl)(l + 2628/w2 + w, Y(1 + s/w3)(l + 264S/w4 )J

where w, = 21,02 rad/sec
w., = 49.52 rad/sec

w, = 302.5 rad/sec

3
W, = 262.7 rad/sec
62 = ,202

64 = ,528

The study of this control system and derivation of the transfer
function is found in Reference 24. Also in this reference is

a specification of the permissable amplitude ratio and phase

lag of the transfer function. The range of changes in each
parameter to be studied was determined from these specifications
to be w, + 10%

w, + 5%

e
+

+ 10%

o
|+

5%



The investigation of dominant poles of the transfer function can
be accomplished by evaluating the impulse response of the system
transfer function, G7.

f(t) 39.6 exp (-21.02t) - .694 exp (-302.5t)

+ 37.05 exp (-10t) sin (44.2t - 98.2°)
+ 1.675 exp (-138.8t) sin (180t + 53.5°)

From this time response, it canh be observed that the exponential
39.6 exp (-21.02t) is the largest term. The complex poles at

w = 49.52 also contribute to a large part of the time response.
The parameters which were therefore selected for testing were

W the open loop gain K and w The additional pole

10 Wor Bou 3°

w, was selected because the servo-valve which it represents

3

is sub ject to large changes from system to system.

3.5.2 Partial Systems

A change of the transfer function as a result of & particular

parameter change can be described by the Taylor series expan-

sion:
2
H(S) - H (g) + §§i§l A, *°° % aﬁH(gl Aa.z + *°°
@] aal L OL s -

i

I

where HO(S) the specified nominal system.

JH(S)

Bai

I

first partial derivative of the system
with respect to the ith parameter.

the particular parameter under investigation.

9]
It
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The partial derivatives which will be considered are those

associated with K, ﬁL, ;Ly 5, and J;. These are:
W 2 w
1 2 3 :
:GZ 5y - (69 7@ ;Ss/w )
1 1l
2
aG7 -28“/w,., - 25. S
8 (1/w,) 7T+ 28,5/w, + sz/w2 )
:fg ) = (G;) 5% 2,2
2 (1 + 2625/w2 + S /w2 )
2
oG (G.) 1 4 2(.25)8 __§_“5
7 = 7 s (1 + s/314) 53.38 53.38
3 (K) 2 ,
HK (1 + s/ul) (1 + S/w3) 1+ 2628/w2 + Sz/w22
2
1 + 2(.52)s + S .
270 270
2 2
1+ 28,5/w, + 8 /w4
0G . -5
3 (1/wy) (1 + s/wy)

The partial derivative systems were simulated and the impulse

responses taken,

These impulse responses are illustrated in



Figure 3-15. It can be seen from these impulse responses that
3G, 8G7

— imately t ti —_— i

N is approximately the negative of a(l/wl) This means
that it will be difficult to separate the effect of an error

due to (fL) from an error due to a change in K.
1

3.5.3 The Orthogonalized Signals

The orthogonalized signals which were used to study the sixth
order transfer functions were generated with the filter bank
shown in Figure 3-16. The signal generation procedure was

to apply an impulse to the filter bank and record the twelve
filter outputs. These twelve time responses are shown in
Figures 3-17 and 3-18. To obtain the growing exponentials
which were used in the system testing, the twelve impulse
responses were recorded on tape and then the tape was reversed
end for end. Thus if Figures 3-17 and 3-18 are turned upside

down, they show the twelve growing exponential signals.

These signals were then tested to establish orthogonality.
This was accomplished by inserting the signals into the gen-
erator filter bank and observing the outputs at the time that
the growing exponential ends. Figures 19 through 20 give
sample results of applying the test signals to the filter

bank. Notice that all signals were crthogonal to each other.
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3.5.4 Determination of the H Matrices

The H matrices were determined using the test setup shown in

Figure 21.
Filter Bank
£1(t)
Recorder — ‘
—— .
fg(t)
thmlng Sample at time
t =0

Figure 21

Determination of the H Matrices Test Setup

Thus for each of the five partial systems given in Section 3.5.2,
a 12 x 12 matrix is formed representing the sampled 12 filter
output response values to the 12 input signals. Each element

of the table gives the result of

By = e B0-8) Hi(S) (s) 5

where the value of hjk represents the results of the input signal

acting on the transfer function Hi(s) and the measuring filter



@3(—8) at time t = 0. There are five of these matrices cor-
responding to the five partial systems of interest. By com-

bining these five Hd matrices a modulation matrix can be obtained.
Because of the size of the matrices no optimization was conducted
to arrive at an optimum probing signal, rather, eﬁgineering judge-
ment was used to arrive at a modulation matrix. While an optimi-
zation process could be conducted, it would give results for only
the first term in the Taylor series expansion. Higher order in-
teractions should determine a portion of the size of the covariance
terms. Any optimization to minimize the covariance terms based on
the first order terms only would be misleading. An example of this
was observed in the testing of the second order system studied in
Phase B and in the testing of the X-Y plotter. In both cases es-
timators based on experimental results which included the second

order results were better than that predicted from the optimization.

One observation about the matrices that was made, was that the values
in the table corresponding to (f;) are the negative of the values

1
in the K table. Because of the close correlation between a change

in (iLJ and K the two parameters will be hard to separate.

The first modulation matrix was selected to measure the parameters

K, j;, ;Ly and 5.,. The parameter 1 was not considered in this
i Y5 2 V3
modulat ion matrix because of its low contribution to the system

response, The test signal, fT(t) used to obtain this modulation



matrix was

fT(t) = f7+(t) + .5 f7_(t) + f3_(t).

When this modulation matrix was tested it was found that the
subtraction of large sighals was required to separate the par-
ameter changes. This resulted in large errors. To reduce these
errors, the modulation matrix was remeasured to obtain an accuracy
of + .l1%. This resulted in only slightly improved results. It
was decided that the numbers in the modulation matrix would have
to be known to within .01% if accurate measurements were to be
made. This level of repeatability could not be attained with the

testing model and could not be expected in a practical situation.

3.5.6 The Results Using Modulation Matrix Two

To bypass the problem of subtracting large signals, an approach
was tried which used a filter bank output to directly represent
a parameter change. By doing this no estimator is needed, and
therefore no subtraction of large sighals is necessary. To do
this required two sequential testing signals. A test signal

le(t) = f8(t) to perform the measurement of K (or - éL),
1
1

E; and 62. A second test signal, sz(t) = f7+(t) was then
used to resolve the difference between K and (- jLﬂ.
1

The eXperimentation with this technigue showed an additional con-
sideration which had not been taken into account. This was that

the size of the second derivative is not included in the estimates



of the parameters. In some cases the second derivative is large
and does represent a significant contribution to the output of
filters. These results indicated that either experimental H
matrices should be taken on the second derivatives, or that

the H matrices should be determined with the actual system with
fixed changes of parameters. The results would still be further
complicated by the inclusion of the cross derivatives, which would

provide interactions in the outputs of the corresponding filters.

3.5.7 The Results Using Modulation Matrix Three

In order to include higher order effects in the parameter pre-
diction process, a new approach was taken. The signal f8(t)

was used as the input testing signal and an experimental design
was conducted to express the output of each filter at the sampled
time, as a function of changes in the parameters of interest.
That is, an equation of the form

4

@j =8, + by (Bm Ay Y @ ) + E,
m=1

where the o, are the parameters of interest. The B and vy co-
efficients are determined from the experimental design data

and E, is an error term which expresses the result of the neg-

[T
)-I
3
D
1
D
3
oh
D
3
t

lecte erms such as a3 and cross product terms

like a The experimental design plan which was performed is

1%2-
shown in Table 3-1. For each of the 25 runs the sampled final
value of the twelve filter outputs was recorded. The equations

used to process this data to determine the 8 and y coefficients



are given in Table 3-2. A further discussion of the experimental
design plan theory can be found in Reference 25. By a careful
selection among the possible twelve filter output eguations it
was found that because some of the B and y terms were relatively
low that the four parameters could be determined by using only
four of the filter outputs. In the general case it would be nec-
essary to use eight of the filter outputs. The matrix which was

determined is given in Table 3-3.

Example results obtained with this estimator are given in Table
3-4, Each run in the table gives the actual parameter changes
and the results of the parameter prediction after performing
the single parameter testing. All numbers in the table are ex-
pressed in percent. The changes in all four parameters could
be estimated with an average error of about 3% when the magni-
tude of a parameter error (or errors) was less than 10%. When
parameter error was greater than 10%, the prediction accuracy

decreased.

The prediction accuracy for three of the parameters was much

better than the accuracy of the w, prediction. The parameters

3

5 and 62 can be predicted with an average accuracy of 1%

when any of the parameters Wy, Wy, w3, w,, 62, 64 vary within

Wy, w

a + 10% range. Trying to also predict w, though, decreases the

3
average accuracy from 1% to 3%. The reason for the difficulty

in predicting w., is that the partial derivative of G7 with

3



respect to w4 is small relative to the derivatives with respect
to w; or w, (see section 3.5.2). Therefore, the system error
output is much larger for a given percentage error in Wy than
ws. In the estimator, to determine w5 requires a cancellation
of large signals, and a small effect (for example a a3 order
effect) in one of the large signals, when subtracted from an-
other large signal, will produce a small difference, but this
difference can be of the same size as the w, error signal which

it is desired to measure, This causes the accuracy difficulty

in measuring w3,



RUN PARAMETER CHANGE FILTER* OUTPUT

n X X X X

1 2 3 4

1 -1 -1 -1 -1 a,
2 -1 -1 -1 1 a,
3 -1 -1 -1 ay
4 1 -1 1 a,
5 -1 1 -1 -1 a
6 -1 1 -1 1 a6
7 -1 1 1 -1 a,
8 -1 1 1 1 ag
9 1 -1 -1 -1 ag
10 1 -1 -1 1 alg
11 1 -1 1 -1 ai;
12 1 -1 1 1 3y,
13 1 1 -1 -1 a1 5
14 1 1 -1 1 al,
15 1 1 1 -1 als
16 1 1 1 1 a1e
17 0 o 0 0 ai-
18 2 o o0 0 alg
19 -2 o 0 0 alg
20 0 2 0 0 350
21 0o -2 0 0 3y,
22 0 o 2 0 N
23 0 ) 0 354
24 o o o 2 354
23 0 -2 925

* There are 12 filter outputs to be recorded for each run

X = A__wl X = A__ UJ__Z
1l .1 ! 2 .05
X = A6_2 X = A_wg_
3 .05 ! 4 .1

Table 3-1

Experimental Design Plan




25

]
’_J

g

ln

2n

3n

4n

B L

Table 3-2

Experimental Design Equations

N = 25
n T Bl L Xln

n =1
a, = 82 z X2n
a, = 83 X X3n
an = B4 Z X4n
TR N S R
Xin + ylZ Xi + sz Xin Xg + Y3Z Xin X
Xon * V1T Kop Xin * YoT Xp * T Xy X
Xgn + le xgn Xin * Y2Z Xgn Xgn * Y3Z X
Xin+ Y1 B Xin Xin * Y22 Xin Xgn * Y3Z X

2 .2
v X5n X4n
2 .2
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3.5.8 8Single Parameter Testing With Gaussian White Noise

In order to better understand some of the results which were

obtained with modulation matrix one (Section 3.5.5), the Single

Parameter testing scheme was modified as shown in Figure 3-22 to

use Gaussian white noise as the input signal.

H(S)
Actual

Noise
. Generator

H_(S)

Nominal

Integrator

Filter
Bank

Estimator

Figure 3-22

Noise Source Testing

Significant parameter testing could not be performed with this

test set up in the short time that it was studied.

Once again

the fact that the estimator coefficients were determined based

on just the first order Taylor series expansion terms was the

problem.,



3.5.9 Single Parameter Testing Using Time Sampling

One other Single Parameter Testing method was used which employed

(26)

time sampling. A block diagram of the test set up is shown

in Figure 3-23.

Test Nominal + Sampée
Signal System an
J Y 2 Hold
Circuits
Actual .
System
Estimator
Parameter
j l l Prediction

Figure 3-23

The Time Sampling Test Setup

The test signal for this time sampling technique was formed by
recording the impulse response of the nominal system on tape and
then reversing the tape end-for-end. The sampling times were
selected by plotting the difference circuit output as a function
of a given parameter changec on an X-Y plotter. An example of

this plot for changes in a given parameter is shown in Figure 3-24.

Note that at time t the value of the error function is zero re-

ll

gardless of the size of the parameter change. This time was then

selected as one of the sampling times. This same type of function



was plotted out for three of the four parameters of interest which
determined three sampling times. The plot for the fourth function
(w%) is shown in Figure 3-25. Note that there is no one time where
this function is zero regardless of the parameter change. Two
sampling times were selected from the plot as follows. Express

the error as

B, noy?
E(t) = alt) (%) + b(t) (—T5)
It is possible to select a time t2 from the X-Y plot such that
a(t2) =0 At this time
-1.25 = a(t,) (1) + b(t,) (1)
_ 2
-5 = a(t,) (2) + b(t,) (2)

and solving these two equations

a(t2) 0

b(t2) -1.25

It is also possible to select a time t3 from the X-Y plot such

that b(t3) = 0. At this time

2
-4 = a(ty) (1) + b(ty) (1)

-8 = a(ty) (2) + b(ty) (2)2

and solving these two equations

4

a(t3)

b(ty)

0

This then is how the five sampling times were selected. The
modulation matrix which was obtained is given in Table 3-5 and
inverting this matrix gives the estimator to be used in the test

setup.



Example results obtained with this estimator are given in Table
3-6. Each run in the table gives the actual parameter changes

and the results of the parameter prediction after performing the
single parameter testing. All numbers in the table are expressed
in percent. The changes in all four parameters could be estimated
with an average error of about 4% when the magnitude of a parameter
error (or errors) was less than 10%. When a parameter error was

greater than 10%, the prediction accuracy decreased.

The prediction accuracy for three of the parameters was much better
2
3 10 W2 v
and 62 could be predicted with an average accuracy of 2% when any

2 I 9
of the parameters w 5 s Wa, Wy, 62, 64 vary within a + 10%

than the accuracy of the w, prediction. The parameters w

10 @
range. Trying to also predict w

3 though, decreased the average

accuracy from 2% to 4%. The reason for the difficulty in pre-

dicting Wy is again the fact that the partial derivative of G7.

with respect to w, is relatively small.

3



dnjos 3say buryduwes swWTJ 9y} WOIJ S3ITnSsY

yZ-¢ ®anb1g

(M) I
~~ [
i |
I 1 | 1
.— f
— s
1 X
/ HAY
I 2 F
] I )
NS \
. r TN ﬂ
000) $ _ N / 1 . 1 \
FAFNGTIOIIT - Y \ / / ,w\ B 5
[ | [T 4 N, - /4 — N |
e = 4 ]
\ y |
\ \
i 1 I /
1 LA W4
1 1 \
JEUN | ©| d
|
71 J
1 i h S Ja]
T
g |
i
8\
N[
1
I
J
\
\‘
+ou bt N
IT / o
D T

3-36




dnass

3sal Hurrdwes swT 9yl WOII sS3TNsSsy

GZ-€ 92anbtg

3\
= [
/
Y -
1 1
/
3 \ °r 44
i Z Y, 7 TP
C iy / |
b / N ’
a \/ ? TN -
N Lf \ / ; Pt N =
NS/ ; -
= WHHS /
, ..
NI [ A I Vi y N
NV S~ \ y Ji
NI ol [q[H
\ ] ] )
\ | \ JTT IS
1 f‘. &
7
y
-
N
ubte Y,
L4 \
N
I i B

3-37



burTdwes swr] I0J XTIJEW UOTILTNPOW

G-¢ e1ael
1T 1 T
AH.\Hav 0 S°0- SLY - S°0- S 1- Ampvm
» N [ ] - - - m
NAH \N m) GG TI- 0 £€g°~ £°0+ 0°¥- ("2)a3
A o m - ] - Y — v
gt/ m) 7 G9*+ 0 G0 Z+ G€ = | ("3)=
. 2 . . . T
(1°/°9) 0 ¥4 G8°+ 0 GL"S ("3)=
L] N - - [ ] L ] N
(T \N M) Z €+ GZ° T- 0zZ°+ 9°2- C (~3)d
4 L i L R

3-38




[fe]
Vel
<

wn
3
<3

Aw2

A62

2
sz

Awl

Ten3oy

Ten3ovy

pPa3oTPaId

Ten3oy

po3oTpPald

Ten3oy

pa3oTpaId

Tenioy

pe3oTpeid

Tenj3oy

Run

0

0% 0%

0%
+3
-13

0% - 0% 0%

0%
+12
-30

0%
+10
-20

Y

+31
+14
-12
+22

+1

+10
-10
+20

+2

+1

+3
+15

+11

+10

-28

+37
+10
-12
+18

-16

-20

+1
+3
+2
+19

+10
-10
+20

+3

+6
+15

+10
-10

+3
+1

+10
+10
-10

10
11
12

+10
-16
-13

+13

+10

-10

13

+1

+10

+10
-10
-10
+10
-10

-10
-10
+10

14
15
16
19
20
21
22

+8
+15
-10

-22

-11
+13

+4
+14
-14

-15

-10
-10
+10
+20

+4
-16
+16

-12

+21
+23

+20 +16

+33

19 +5
- -20 -24 -20 +
- +56

+27

23
24
25

+20

+1

+20
-20

(@]

-38

+20

+38

+2

+5

26
27
28
29

-20

-50
~15
+17

+1

0 +20

-20

0]

+1

+3

Table 3-6

Actual Versus Predicted Parameter Changes
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3.5.9.1 Confidence Sampling

This time sampling technique could also be used for Go-NO-GO

confidence sampling. For example, if the time at which the

error due to a change in Wy is a maximum is selected as the
sampling time, than an error voltage output at this time less
than a certain threshold limit betermined for this example by

that level produced by a 5% error in w )would assure that if

1

only one parameter has varied, the change is

Awll < 5%
or AW 2\ < 6%
2
or Aw3| < 46%
or Aézi < 10% .

One problem with this type of testing is the possibility that
two parameters will change in opposite directions such that

the resultant error signal is zero at the sampling time.

Another way to perform the confidence testing would be to detect

the maximum error signal over the complete time period.
same threshold limit is selected as in the previous case this

has

would assure that if only one parameter

lAwl| < 5%
or |Aw22| < 3%
or |Aw3| < 30%
or |A62| < 7%

If the

varied, the change is



Again it is possible for two error signals to cancel each other
out but the probability of cancellation over the complete time

period is much less than at just one particular sampling time,



4.0 SUMMARY OF RESULTS

The theory of growing exponential signals has been shown to be
applicable to testing first and second order systems. The theory
can also be used for higher order systems using experimental
methods to establish the estimator for the parameters to be mea-

sured.,

The range in which accurate parameter measurements can be made
depends upon the complexity of the system, but in all cases the
range was at least + 10% of the nominal value. This range should
be sufficient to cover the desired range of parameter changes and
establish undesirable conditions if they are present. The average
accuracy of the measurements was within + 3% in all cases. The
size of the error depended upon the sensitivity of the parameters,
and the complexity of the transfer function. This accuracy should

be sufficient to establish high confidence in the measurements.

Other results which indicate the applicability of the method are:

a. The minimum signal to noise ratio requirement of 26 db

does not restrict the approach.

b. In a brief look taken at a transfer function with a non-
linear coefficient it was found that it did not appre-
ciably affect the parameter prediction. Further study
of a non-linear model of the thrust vector control system
will soon be undertaken and the results published in a

supplement report.



C. Single parameter testing can be used to study linear
active networks by interpreting them as linear system

transfer functions with limited input signal amplitudes.

Implementation problems which were uncovered in the study indicate

the importance of the following two items:

a. The testing equipment should be well isolated from the
system by buffer stages. These buffer stages should

not appreciably affect the transfer function,

b. The testing ecuipment should be compatible with signal

levels of the equipment being measured.

These two problems are not limitations to the method, but they

must be carefully considered.

The time sampling single parameter testing technique gives results
which are comparable to the growing exponential technique. The
estimator is easier to determine with the time sampling technique
and the equipment involved in the implementation is simpler., The
time sampling technique can also be used for GO-NO-GO confidence
sampling, All of the comments concerning the applicability of the
growing exponential technique apply also to the time sampling ap-

proach.

In conclusion, the steps to be taken to implement single parameter
testing for a given system are:
1. Develop a nominal system response, This response can be

determined by the statistical measurement of a number of
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good systems. Once the nominal response is determined it

can be stored on tape.

Develop a system model which can be used in the determination
of an estimator. Good methods are available for this system

transfer function determination.

The estimator is determined by a theoretical method as de-
scribed in Section 2 for first and second order transfer
functions or by experimental technigques for higher order

systenms.

The fourth step is the implementation of the technigque with
the actual hardware to be tested, keeping in mind impedance

and signal level matching considerations.



5.0 CONCLUSIONS AND RECOMMENDAT IONS

The main objective of the study has been met. We have established
a method for the testing of active and passive transfer functions.
This method was used on several transfer functions and accuracy
and measurement time proved to as good or better than present
methods of checkout. Faster checkout time is a direct result of
the methods studied, Less degradation due to performance is a
direct result of using smooth probling signals. Accuracy is ac-

ceptable over a parameter range of + 10% or more.

It is therefore recommended that an extension of this program
be carried out. The emphasis during the extension would be placed
on the applicability of the testing method. The objectives of the

program would be:

1. 2Apply the methods of single parameter testing to launch
vehicle systems, the purpose being to establish the re-

quirements for implementation.

2. Extend the techniques to particular non-linear systems.
The intent being to enlarge the class of systems being

applicable to single parameter testing.

3. Assess the usefulness of single parameter testing by com-
piling a list of equipment, with equipment parameters,

which could be tested by single parameter testing methods.

4. Recommend an approach to the actual implementation of the
testing methods for the equipment on which the technique

can be used.
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